Modelling biological systems

S.Ali.Zendehbad

Analytical modeling

Stages of Analytical Modeling

- Determine Input-Output
- Determine primary and secondary variables
- Indicate the relationship between components of the system
- Find the dynamic (differential) equation
- Linearization of nonlinear equation
- Transform differential equation to algebraic (Laplace transformation)
- Obtain the relationship between input & output (transformation function)

Determine Input-Output

The first stage in analytical modeling

EXAMPLE:

Modeling of muscle

Input: alpha or gamma fiber

Output: stiffness or length of muscle

Determine primary and secondary variables

- primary and secondary variables are studied as longitudinal and transverse variables in different systems
 - Longitudinal variables :
 - · Don't need source
 - Without alteration through passing the element
 - Electric current
 - Flow of fluid
 - Transverse variables :
 - · Need a source to measure difference
 - Electric voltage
 - Hydraulic pressure

Determine primary and secondary variables

- With determined longitudinal and transverse variables we can obtain impedances (R,L,C) as secondary variables
- R: consume energy
- · C: store electric energy
- L: store magnetic energy

Relationship between component of the system

- we should define the rules of Interactions between components
 - Example
 - · Kirchoff's laws
 - Currents sum to zero at interconnection points

$$\sum_{k} i_{k} = 0$$

- Voltage drops around closed circuit equal zero

$$\sum_{k} u_{k} = 0$$

Find the dynamic (differential) equation

- We should organize the basic equation and find the relation between input & output
- For example we use "n" first order differential equation for system with order "n" to relate input to output
- Example:
 - RLC circuit

$$\begin{cases} v_s - Ri - L\frac{di}{dt} - v_c &= 0 \\ C\frac{dv_c}{dt} &= i \end{cases}$$

Linearization of nonlinear equation

- If system has nonlinear components try to linearize them in acceptable range
- Near a stationary point, the system is approximately linear
- for example linearization transistor around its stationary point (load point)

 For linearization around "x=x₀" we can use Taylor series expansion around x=x₀

Linearization of nonlinear equation

If function depend on several variables then:

$$y = y_o + (x_1 - x_{10}) \frac{df}{dx_1} \Big|_{x_1 = x_{10}} + (x_2 - x_{20}) \frac{df}{dx_2} \Big|_{x_2 = x_{20}} + \dots$$

 If the system are severely is nonlinear or the range of variation is extended then piece-wise linearization will be used and according to the range of input one relationship is considered.

Modeling of Analog Systems

- Electrical
- Mechanical
- Hydraulic
- Chemical
- Thermal

- Magnetic
- Social
- Economic
- Traffic
- Psychology

Each of the above models can be divided into several states

Electrical Systems

- Primary variables
 - Longitudinal variables : current
 - Transverse variables : voltage
- Secondary variables

- Resistive elements :
$$u(t) = Ri(t)$$

- Inductors :
$$i(t) = \frac{1}{L} \int_0^t u(s) ds$$
 $L \frac{di(t)}{dt} = u(t)$

- Inductors :
$$i(t) = \frac{1}{L} \int_0^t u(s) \ ds \qquad L \frac{di(t)}{dt} = u(t)$$
 - Capacitors :
$$u(t) = \frac{1}{C} \int_0^t i(s) \ ds \qquad C \frac{du(t)}{dt} = i(t)$$

Mechanical Systems

- Translational
- Rotational
- Hydraulic
- Thermal

Translational

- Primary variables
 - Longitudinal variables : force
 - Transverse variables : velocity
- Secondary variables

$$F(t) = \gamma v(t)$$

- Spring :
$$F(t) = k \int_0^t v(s) \ ds \qquad \frac{1}{k} \frac{d}{dt} F(t) = v(t)$$

$$\frac{1}{k}\frac{d}{dt}F(t) = v(t)$$

$$v(t) = \frac{1}{m} \int_0^t F(s) \, ds$$
 $m \frac{d}{dt} v(t) = F(t)$

Translational

• Example :

Write the mathematical model and plot the electrical model

contact us

E-mail: Ali.zendebad@gmail.com Homepage: Sazendehbad.ir Telegram: @Cyberstudents

